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We devise a message passing algorithm for probabilistic inference in composite systems, consisting of a
large number of variables, that exhibit weak random interactions among all variables and strong interactions
with a small subset of randomly chosen variables; the relative strength of the two interactions is controlled by
a free parameter. We examine the performance of the algorithm numerically on a number of systems of this
type for varying mixing parameter values.
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I. INTRODUCTION

Complexity has been identified as a key research area of
significant future demand in a variety of fields from telecom-
munication and ad hoc networks to biological systems, trans-
port, and social networks �1,2�. Among the main character-
istics of complex systems are their heterogeneous structure,
nonlinearity, and large scale, which makes it difficult to in-
vestigate them using traditional methods. Current research
activities mostly focus on large scale simulations, for in-
stance of interacting agents, or on numerical solutions of
coupled nonlinear deterministic or stochastic differential
equations.

The sensitivity of most numerical methods to model pa-
rameters and external observations, the sheer scale of the
systems studied, and the range of interactions involved pose
significant difficulties when it comes to reliable numerical
modeling and analysis of such systems. Providing robust,
principled, and reliable algorithms for obtaining solutions in
specific instantiations of such systems is considered very dif-
ficult due to their large scale, nonlinearity, and inherent mul-
tilevel interactions.

The general approach that we advocate for understanding
such systems is based on approximate and distributive proba-
bilistic methods that are local, scale well �linearly or at most
quadratically� with the system size, accommodate variable
and measurement uncertainties, and readily provide confi-
dence levels for the inferred variables. These take the form
of message passing techniques such as belief propagation
�BP� that have been developed independently within the
physics �3�, computer science �4,5� and information theory
�6� communities. The main advantage of these methods is
their moderate growth in computational cost, with respect to
the systems size, due to the local nature of the calculation
when applied to problems that can be mapped onto sparse
graphs. They have been proved to be exact on polytrees and
provide good approximations as long as the number of short
loops in the corresponding graph is small.

Different approaches, based on mean-field approxima-
tions, have been suggested for obtaining solutions in the case
of densely connected systems, where the number of connec-
tions is large and of the same order as the number of vari-
ables �while the connection strength is relatively weak,
O�N−1/2� where N is the system size� �3,7,8�. These highly
successful methods heavily rely on the assumptions that the

system is very large, densely connected, and the interactions
weak, through a sequence of approximations.

Until recently, message passing techniques were deemed
unsuitable for inference in densely connected systems due to
the inherently high number of short loops in the correspond-
ing graphical representation, and the large number of con-
nections per node, which result in a high computational cost.
Both properties are considered prohibitive to the use of con-
ventional message passing techniques. However, various
methods have been recently suggested �9–12� for a message
passing based algorithm in densely connected systems; they
rely on replacing individual messages by averages sampled
from a Gaussian distribution of some mean and variance that
are modified iteratively.

The problem we focus on here is that of composite sys-
tems with large numbers of elements and multilevel interac-
tions, which represents a particular manifestation of a com-
plex system. These are particularly difficult and challenging
systems to analyze since although principled approaches
have been devised separately for systems with very dense �9�
or very sparse �4,5� interacting elements, they typically fail
for the composite multilevel systems. In this paper we show
how recent advances in the development of message passing
techniques can give rise to a new algorithm which accom-
modates messages from both sparse and dense components
of the same graph.

The motivation for studying the specific system consid-
ered here is that it is among the simplest composite models
involving a combination of dilute and dense couplings. In
addition, such models are likely to feature in various engi-
neering applications. For example, dense weak interactions
are likely to emerge, in addition to the designed sparse and
strong interactions, in high-density integrated circuits. Ana-
lyzing the effects of the emerging weak couplings may be
highly useful for minimizing their impact. Alternatively, such
systems may be engineered deliberately with a combination
of dilute �strong� and dense �weak� interactions either to
make them more robust or to exploit specific properties of
the composite system. In multiuser channel coding, for in-
stance, this may make the communication process more ro-
bust against different types of noise, desynchronization or
malicious attacks �13�. Only recently, a special case of the
system studied here was suggested as a model for studying
the resilience of networks against attacks �14�. A similar sys-
tem to the one studied here was recently analyzed at a mac-
roscopic level, using the replica method �15�, complementing
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the microscopic treatment of specific instances introduced
here.

The remainder of the paper is organized as follows. In
Sec. II we present the model to be studied, while the message
passing equations will be derived in Sec. III. Experiments
aimed at examining the new algorithm will be described in
Sec. IV. We will conclude with a summary and future re-
search directions in Sec. V.

II. MODEL

While BP-based algorithms for inference in sparsely �4,5�
and densely �9–11� connected systems have been introduced,
no method has been devised for inference in composite sys-
tems that comprise both weak �but densely connected� and
strong �sparse� interactions.

The model we focus on here is based on N noisy mea-
surements y�, �� �1¯N� of K interacting variables �bits or
spins� bk, k� �1,2 , . . . ,K�. The model comprises two com-
ponents, the first represents weak interactions between all
variables while the second represents a few �J� strong inter-
actions with a few, randomly chosen, variables. The random
binary interactions themselves s�i� �−1,1� are chosen with
equal probability of taking the values �1. The measure-
ments, corrupted by Gaussian noise of zero mean and stan-
dard deviation �0 take the form

y� =
�

�J
�
j=1

J

s�ij
bij

+
1 − �

�K
�
k=1

K

s�kbk + �0n�, �1�

where �i1 , i2 , . . . , ij� are a set of randomly selected �fixed�
indices for each evidential node �measurement� � for the
given system, 0���1 is a coefficient that regulates the ra-
tio of dense and sparse components, and the coefficients
1 /�K and 1 /�J normalize the strength of both components
to O�1�. Figure 1 provides a graphical representation of the
model investigated. Notice that the sum over nodes with
weak couplings includes all variables and does not separate
those with strong interactions; as there are only O�1� such
variables, their contribution to the sum over nodes with weak
couplings in negligible.

This model represents a special case of a composite sys-
tem where different levels of interaction coexist. In particu-
lar, the strength of the interactions are defined in such a way
as to keep both contributions of similar order even in large
systems. We believe the same approach can be easily ex-

tended to more complex connectivity and interaction pro-
files.

The suggested composition of strong and weak couplings
has been chosen as it is arguably the simplest choice. Res-
caling the couplings with respect to the choice of � may also
be sensible although both choices have their pros and cons in
terms of the scaling properties they provide.

III. ALGORITHM

We employ the Bayesian scheme to infer the values of the
various variables given the composite interactions. The aim
is to find the local maximum a posteriori �MAP� variable
values, also termed marginal posterior maximizer �MPM�,
P�bk 	 �y�� , ∀��, on the basis of the observation and prior
belief in the values of the variables.

A. Messages

Belief propagation algorithms are based on the derivation
of messages, local conditional probabilities, to be passed
from variable to evidential nodes and vice versa, using a
closed set of approximate equations. In the case considered
here there are two different types of messages from and to
variable nodes that are strongly or weakly interacting with
�or, correspondingly, sparsely and densely connected to� a
particular evidential node.

The messages from variable to factor, or evidential, nodes
are defined separately from those passed from factor to vari-
able nodes:

Pt+1�y�	bk,�y����� = �
bl�k

P�y�	b�

l�k

Pt�bl	�y����� , �2�

Pt�bk	�y����� = ��k
t 


���

Pt�y�	bk,�y����� , �3�

where t=1,2 , . . . is an iteration �time� index. There is also a
normalization constant ��k

t due to the two constraints
�y�=�1Pt�y� 	bk , �y�����=1 and �bk=�1Pt�bk 	 �y�����=1. The
marginalized posterior at tth update is evaluated from
Pt�y� 	bk , �y����� as Pt�bk 	y�=�k
�=1

N Pt�y� 	bk , �y�����,
where �k is again a normalization constant.

Since bk is a binary variable, one can with no loss of
generality, parametrize the conditional probability distribu-
tions as

Pt�y�	bk,�y����� 	 �1 + m̂�k
t bk�/2,

Pt�bk	�y����� = �1 + m�k
t bk�/2,

and Pt�bk	y� = �1 + mk
t bk�/2

using the parameters m�k
t �magnetization�, mk

t , and m̂�k
t+1. This

simplifies the expressions by writing recursive equations for
the two sets of parameters

m̂�k
t+1 =

�
b

bkP�y�	b�

l�k

��1 + m�l
t bl�/2�

�
b

P�y�	b�

l�k

��1 + m�l
t bl�/2�

, �4�

FIG. 1. Graphical representation of the composite inference
problem, characterized by a high number of weak links between all
variables and an evidential node, and only a few strong couplings to
randomly selected variables.
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m�k
t = tanh� �

���

tanh−1m̂�k
t � . �5�

Employing these variables, the approximated posterior aver-
age of bk at the tth update can be computed as mk

t

=tanh���=1
N tanh−1m̂�k

t �. After convergence, the inferred value
becomes

bk = sgn�mk
t � . �6�

The two cases of strong and weak links will be considered
separately when the messages m�k, from variable k to evi-
dential node �, are calculated. If k is part of the strongly
connected local neighborhood of evidential node �, the
equations will be based on the sparse graph model �4,5�,
whereas the approach used for the densely connected case
�9–11� will be used when variable node k is weakly con-
nected to �.

B. Strongly interacting nodes

In calculating the messages m̂�k and m�k one should con-
sider separately the contribution made by nodes that interact
strongly and weakly with the particular factor node exam-
ined. The summation over variables is decomposed to two
separate sums, over the strongly and weakly interacting vari-
ables,

m̂�k
t+1 =

�
bs

�
bw

bkP�y�	b�

l�k

��1 + m�l
t bl�/2�

�
bs

�
bw

P�y�	b�

l�k

��1 + m�l
t bl�/2�

,

m�k
t = tanh� �

���

tanh−1m̂�k
t � .

Considering 
�= 1−�
�K

�l=1
K s�lbl+

�
�J

� j=1
J s�ij

bij
, the first term

represents a sum over a large number of independent vari-
ables while the second can be summed exactly to provide a
certain value at each iteration t. To evaluate 
� we employ
the central limit theorem: 
� obeys a Gaussian distribution
N(
�

t � , �1−Q�
t ��), where �1−Q�

t ����1−��2�1−Q�
t �,


�
t � =

1 − �

�K
�
l=1

K

s�lm�l
t +

�

�J
�
j=1

J

s�ij
bij

�7�

and

Q�
t = �1/K��

l=1

K

�m�l
t �2, �8�

which is well approximated by

Qt = �1/K��
l=1

K

�ml
t�2. �9�

Using the Gaussian nature of the noise and the distribution of

� one obtains at each iteration t

P�y�	b� =
1

�2�

1

��0
2 + �1 − Qt��

exp�−
�y� − 
�

t ��2

2��0
2 + �1 − Qt����

�10�

and the corresponding messages

m̂�k
t+1 =

�
bs

bkP�y�	b� 

l�S���/k

��1 + m�l
t bl�/2�

�
bs

P�y�	b� 

l�S���/k

��1 + m�l
t bl�/2�

, �11�

where S��� /k represents all the variables connected through
strong links to factor �, except node k. Note that dependence
on the variable bk also appears through the expression for
P�y� 	b� as in Eq. �10�.

C. Weakly interacting nodes

One of the main differences with the previous case is that
we exploit the dense character of the weak interactions and
expand the contribution around the mean by excluding the
contribution of a single variable as in �9�. We now consider

�k= 1−�

�K
�l=1,l�k

K s�lbl+
�
�J

� j=1
J s�ij

bij
. Using the central limit

theorem 
�k obeys a Gaussian distribution N(
�k
t � , �1

−Q�k
t ��), at each iteration t, where


�k
t � =

1 − �

�K
�

l,l�k

K

s�lm�l
t +

�

�J
�
j=1

J

s�ij
bij

�12�

and

Q�k
t = �1/K��

l=1

K

�m�l
t �2. �13�

Following a similar derivation as in �9�, the conditional prob-
ability can be written as

P�y�	b� = �1 +
�y� − 
�k

t ��s�kbk�1 − ��

��0
2 + �1 − Qt����K

�
�

1

�2���0
2 + �1 − Qt���

exp�−
�y� − 
�k

t ��2

2��0
2 + �1 − Qt���� .

Using the notation

A =
�y� − 
�k

t ��s�k�1 − ��

��0
2 + �1 − Qt����K

and

B =
1

�2���0
2 + �1 − Qt���

exp�−
�y� − 
�k

t ��2

2��0
2 + �1 − Qt���� ,

one can rewrite the message as

m̂�k
t+1 =

�
bs

AB 

l�S���

��1 + m�l
t bl�/2�

�
bs

B 

l�S���

��1 + m�l
t bl�/2�

. �14�

Notice that there is still a sum over bs, as in the sparse case,
which has implications for the complexity of the suggested
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inference algorithm. Contributions from the densely con-
nected nodes dominate the complexity of the algorithm and
require O�K2� operations while the sparse components scale
linearly in N but are exponential in the �small� number of
sparse connections J.

IV. EXPERIMENT

To examine the efficacy of the algorithm for inference in
composite systems and gain insight into the behavior of such
systems in particular cases, we carried out a number of ex-
periments for a system of size N=1000 and varying K

=NJ / C̄, as determined by the connectivity degree of strongly

interacting neighbors per variable �average C̄� and measure-

ment �J�. We kept the measurement node connectivity, of
degree J=3, fixed and varied the value of K=500, 600, 750,
in correspondence with the fixed �average� variable connec-

tivities C�C̄�=6,5 ,4. The systems vary in the type of sparse
variable connectivity applied �fixed or random�, the strengths
of the sparse �dense� interactions ��1−��, and the noise level
�0. Random connectivity graphs, representing the sparse in-
teractions, and random interaction values have been gener-
ated in each of the experiments.

In each case we carried out 500 experiments by iterating
Eqs. �7�, �11�, and �14� from randomly chosen initial condi-
tions until convergence �more precisely, 25 graphs and 20
input and output tests for each point�; we then inferred the
values of the various variables on the basis of the pseudopos-
terior �6�. The convergence and halting criterion was defined
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FIG. 2. �Color online� Performance of the BP-based algorithm for composite systems. �a� Error probability as a function of the number
of iterations t for different mixing parameter values � and fixed connectivity systems of C=3. Rapid convergence to low error-probability
values is observed for high � values while residual asymptotic error probability remains for dense connectivity dominated systems of low �

values. �b� Asymptotic error probability Pe
asy as a function of �, for fixed �solid lines� and random connectivity �of mean C̄—dashed lines�.

�c� Median number of time steps required for convergence tmed as a function of �, both for the fixed �solid lines� and random �dashed lines�
connectivities. �d� Asymptotic error probability as a function of the noise variance for fixed connectivity C, and mixing parameters �
=0.25 �solid lines�, and 0.75 �dashed lines�.
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as an unchanged solution over four iterations, or reaching a
maximum of 20 iterations.

Two main sparse connectivity patterns have been used,
fixed connectivity C and random connectivity, resulting in a

Poissonian distribution of mean C̄. Results obtained for the
various cases are shown in Fig. 2 for fixed connectivity
sparse couplings and randomly connected sparse graphs.

Figure 2�a� shows the average error probability of the
inference algorithm as a function of the number of iterations
for different � values in the case of fixed connectivity C=3.
While the algorithm results in rapid convergence to a very
low error probability for high � values, corresponding to a
strong sparse component, it approaches a residual asymptotic
error probability at low � values, characteristic of densely
connected and weakly interacting systems. The quality of the
solutions obtained is shown in Fig. 2�b�, where the
asymptotic error-probability values Pe

asy are plotted as a
function of �, for different fixed connectivity values C �solid

line� and Poissonian distributions of mean C̄ �dashed line�;
error bars have been removed for brevity. We see that fixed
connectivity systems typically show lower asymptotic values
than the randomly connected systems for low � values, a
difference that disappears for high �, where the dense cou-
plings dominate; the asymptotic error probability typically
decrease with the increase in �. It is interesting to note that
asymptotic results typically improve with the increase in
connectivity as the ratio of variable to evidential nodes de-
creases.

To study the dependence of the rate of convergence on
both � and the degree of connectivity, we plotted in Fig. 2�c�
the median number of time steps required for the system to
converge as a function of �, for both the fixed �solid lines�
and random �dashed lines� connectivities; error bars have
been removed for brevity. We see that the number of itera-
tions required for convergence generally decreases as � and
the connectivity increase with little difference between the
fixed and random sparse connectivity profiles, mainly in the
low � values. Also here, the dependence on the connectivity

values may be explained by the varying ratio of variable to
evidential nodes.

In Fig. 2�d� we examine the dependence of the asymptotic
error probability on the noise variance for several fixed and
random connectivity values �=0.25 and 0.75 �solid and
dashed lines, respectively�. We see that, unsurprisingly, the
asymptotic error rate increases with the noise variance with
systems of lower � values and higher connectivity values
exhibiting higher robustness to noise as the ratio of variable
to evidential nodes decreases.

Finally, we studied the convergence rate of the algorithm
for the various systems studied. While the convergence cri-
terion used in our simulations was sufficient for evaluating
the asymptotic performance of the suggested algorithm it
cannot provide reliable information on the rate of conver-
gence.

To quantify the convergence rate for various � and con-
nectivity values C, we plotted the evolution of the conver-
gence measure,

D�t� = max
∀�,k

�Pt+1�y�	bk� − Pt�y�	bk�� .

Simulations for fixed connectivity graphs have been carried
out using the same experimental setup as before. The results
of Fig. 3 show that inference in sparse-dominated systems
converges rapidly while dense-dominated systems tend to
converge much slower. Naturally, the effect is more empha-
sized for low sparse connectivity values C. It is interesting to
note that the existence of stronger sparse inputs delays the
convergence for low � values, presumably since stronger av-
erage messages from the densely connected nodes are re-
quired to counterbalance messages from the more volatile
dense couplings �e.g., for �=0.1,0.25�.

V. CONCLUSION

The study of complex systems poses significant new chal-
lenges as they are, by their very nature, large, nonuniform,
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FIG. 3. �Color online� The convergence measure D�t� for various � and connectivity values. �a� Fixed connectivity C=5; �b� Fixed
connectivity C=6.
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and their components interact in a nontrivial manner. While a
significant effort is dedicated to numerical studies of specific
complex systems we see the main way forward through a
principled distributive Bayesian approach; this enables one
to carry out the calculations in times that scale linearly or
quadratically with the systems size and provides both the
approximate inferred values and the related confidence level.

In the current study we have combined message passing
based algorithms that were developed for both sparsely and
densely connected systems to study exemplar composite sys-
tems. These comprise a densely connected system of weakly
interacting components and an overlaid sparse but strong in-
teraction.

We demonstrated the efficacy of the suggested algorithm
by studying the error rate obtained in the composite system
case for various mixtures of dense and sparse interactions,
governed by the mixing parameter �, and different sparse
connectivity characteristics �fixed and random of various
mean values�.

Unsurprisingly, the system examined exhibits a sparse
system behavior as long as � values are high, and gradually
exhibits a behavior characteristic of a densely connected sys-
tem for low � values. It shows fast convergence to low error
rates for high � values �systems dominated by the sparse
couplings�, but performance improves as the connectivity
value of the sparse couplings increases �but is still small� due
to the decreasing ratio of variable to evidential nodes. While
sparse-dominated systems tend in general to converge faster,
low connectivity values tend to slow down convergence in

the remainder of the system for low � values, presumably
due to the higher volatility of dominating messages from the
sparsely connected components. The current algorithm can
be used to derive general properties of such systems by ap-
plying density evolution, as well as inference in specific in-
stances.

Future work in this area is practically unlimited. First, one
may consider extending the work to study multistate com-
posite systems where variables are not limited to the binary
representation �3,16�, or to other connectivity profiles that
require the use of generalized BP �17� or cluster variation
techniques �18–20�. Second, one may seek a principled ap-
proximation for systems that have an intermediate range of
interactions that is not readily accommodated within the cur-
rent two-level system. Finally, one may want to apply the
algorithm and its derivatives to real systems that exhibit a
two- �or multi-� level behavior, such as recently introduced
stochastic weather forecasting models that accommodate
both nearest cell and global long range interactions; or of
densely connected sensor �or mechanical� arrays imple-
mented in integrated circuits that exhibit both strong interac-
tions with neighboring sensors and a weak coupling with all
other sensors.
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